+--- Day 15: Chiton ---
+
+You've almost reached the exit of the cave, but the walls are getting closer
+together. Your submarine can barely still fit, though; the main problem is that
+the walls of the cave are covered in chitons, and it would be best not to bump
+any of them.
+
+The cavern is large, but has a very low ceiling, restricting your motion to two
+dimensions. The shape of the cavern resembles a square; a quick scan of chiton
+density produces a map of risk level throughout the cave (your puzzle input).
+For example:
+
+1163751742
+1381373672
+2136511328
+3694931569
+7463417111
+1319128137
+1359912421
+3125421639
+1293138521
+2311944581
+
+You start in the top left position, your destination is the bottom right
+position, and you cannot move diagonally. The number at each position is its
+risk level; to determine the total risk of an entire path, add up the risk
+levels of each position you enter (that is, don't count the risk level of your
+starting position unless you enter it; leaving it adds no risk to your total).
+
+Your goal is to find a path with the lowest total risk. In this example, a path
+with the lowest total risk is highlighted here:
+
+1163751742
+1381373672
+2136511328
+3694931569
+7463417111
+1319128137
+1359912421
+3125421639
+1293138521
+2311944581
+
+The total risk of this path is 40 (the starting position is never entered, so
+its risk is not counted).
+
+What is the lowest total risk of any path from the top left to the bottom
+right?
+
+Your puzzle answer was 393.
+
+--- Part Two ---
+
+Now that you know how to find low-risk paths in the cave, you can try to find
+your way out.
+
+The entire cave is actually five times larger in both dimensions than you
+thought; the area you originally scanned is just one tile in a 5x5 tile area
+that forms the full map. Your original map tile repeats to the right and
+downward; each time the tile repeats to the right or downward, all of its risk
+levels are 1 higher than the tile immediately up or left of it. However, risk
+levels above 9 wrap back around to 1. So, if your original map had some
+position with a risk level of 8, then that same position on each of the 25
+total tiles would be as follows:
+
+8 9 1 2 3
+9 1 2 3 4
+1 2 3 4 5
+2 3 4 5 6
+3 4 5 6 7
+
+Each single digit above corresponds to the example position with a value of 8
+on the top-left tile. Because the full map is actually five times larger in
+both dimensions, that position appears a total of 25 times, once in each
+duplicated tile, with the values shown above.
+
+Here is the full five-times-as-large version of the first example above, with
+the original map in the top left corner highlighted:
+
+11637517422274862853338597396444961841755517295286
+13813736722492484783351359589446246169155735727126
+21365113283247622439435873354154698446526571955763
+36949315694715142671582625378269373648937148475914
+74634171118574528222968563933317967414442817852555
+13191281372421239248353234135946434524615754563572
+13599124212461123532357223464346833457545794456865
+31254216394236532741534764385264587549637569865174
+12931385212314249632342535174345364628545647573965
+23119445813422155692453326671356443778246755488935
+22748628533385973964449618417555172952866628316397
+24924847833513595894462461691557357271266846838237
+32476224394358733541546984465265719557637682166874
+47151426715826253782693736489371484759148259586125
+85745282229685639333179674144428178525553928963666
+24212392483532341359464345246157545635726865674683
+24611235323572234643468334575457944568656815567976
+42365327415347643852645875496375698651748671976285
+23142496323425351743453646285456475739656758684176
+34221556924533266713564437782467554889357866599146
+33859739644496184175551729528666283163977739427418
+35135958944624616915573572712668468382377957949348
+43587335415469844652657195576376821668748793277985
+58262537826937364893714847591482595861259361697236
+96856393331796741444281785255539289636664139174777
+35323413594643452461575456357268656746837976785794
+35722346434683345754579445686568155679767926678187
+53476438526458754963756986517486719762859782187396
+34253517434536462854564757396567586841767869795287
+45332667135644377824675548893578665991468977611257
+44961841755517295286662831639777394274188841538529
+46246169155735727126684683823779579493488168151459
+54698446526571955763768216687487932779859814388196
+69373648937148475914825958612593616972361472718347
+17967414442817852555392896366641391747775241285888
+46434524615754563572686567468379767857948187896815
+46833457545794456865681556797679266781878137789298
+64587549637569865174867197628597821873961893298417
+45364628545647573965675868417678697952878971816398
+56443778246755488935786659914689776112579188722368
+55172952866628316397773942741888415385299952649631
+57357271266846838237795794934881681514599279262561
+65719557637682166874879327798598143881961925499217
+71484759148259586125936169723614727183472583829458
+28178525553928963666413917477752412858886352396999
+57545635726865674683797678579481878968159298917926
+57944568656815567976792667818781377892989248891319
+75698651748671976285978218739618932984172914319528
+56475739656758684176786979528789718163989182927419
+67554889357866599146897761125791887223681299833479
+
+Equipped with the full map, you can now find a path from the top left corner to
+the bottom right corner with the lowest total risk:
+
+11637517422274862853338597396444961841755517295286
+13813736722492484783351359589446246169155735727126
+21365113283247622439435873354154698446526571955763
+36949315694715142671582625378269373648937148475914
+74634171118574528222968563933317967414442817852555
+13191281372421239248353234135946434524615754563572
+13599124212461123532357223464346833457545794456865
+31254216394236532741534764385264587549637569865174
+12931385212314249632342535174345364628545647573965
+23119445813422155692453326671356443778246755488935
+22748628533385973964449618417555172952866628316397
+24924847833513595894462461691557357271266846838237
+32476224394358733541546984465265719557637682166874
+47151426715826253782693736489371484759148259586125
+85745282229685639333179674144428178525553928963666
+24212392483532341359464345246157545635726865674683
+24611235323572234643468334575457944568656815567976
+42365327415347643852645875496375698651748671976285
+23142496323425351743453646285456475739656758684176
+34221556924533266713564437782467554889357866599146
+33859739644496184175551729528666283163977739427418
+35135958944624616915573572712668468382377957949348
+43587335415469844652657195576376821668748793277985
+58262537826937364893714847591482595861259361697236
+96856393331796741444281785255539289636664139174777
+35323413594643452461575456357268656746837976785794
+35722346434683345754579445686568155679767926678187
+53476438526458754963756986517486719762859782187396
+34253517434536462854564757396567586841767869795287
+45332667135644377824675548893578665991468977611257
+44961841755517295286662831639777394274188841538529
+46246169155735727126684683823779579493488168151459
+54698446526571955763768216687487932779859814388196
+69373648937148475914825958612593616972361472718347
+17967414442817852555392896366641391747775241285888
+46434524615754563572686567468379767857948187896815
+46833457545794456865681556797679266781878137789298
+64587549637569865174867197628597821873961893298417
+45364628545647573965675868417678697952878971816398
+56443778246755488935786659914689776112579188722368
+55172952866628316397773942741888415385299952649631
+57357271266846838237795794934881681514599279262561
+65719557637682166874879327798598143881961925499217
+71484759148259586125936169723614727183472583829458
+28178525553928963666413917477752412858886352396999
+57545635726865674683797678579481878968159298917926
+57944568656815567976792667818781377892989248891319
+75698651748671976285978218739618932984172914319528
+56475739656758684176786979528789718163989182927419
+67554889357866599146897761125791887223681299833479
+
+The total risk of this path is 315 (the starting position is still never
+entered, so its risk is not counted).
+
+Using the full map, what is the lowest total risk of any path from the top left
+to the bottom right?
+
+Your puzzle answer was 2823.
+
+Both parts of this puzzle are complete! They provide two gold stars: **
+
+At this point, you should return to your Advent calendar and try another
+puzzle.
+
+If you still want to see it, you can get your puzzle input.
+
+You can also [Share] this puzzle.
+